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Morphine (1) is the principal alkaloid of opium, derived from  Scheme 1

Papaver somniferum L, or P. album Mil, Papaveraceae' Mor- N B S0P R
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phine is also found in normal brain, blood, and liver tissée ' — o
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products of unique clinical importance in medicih&he unusual 1 o 2
architecture of morphine has offered a continuing challenge to the o'zh,Ph
art and science of organic synthe&i§. o OH
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We envisioned that-{)-morphinel could ultimately be con- e o, %— z
structed from the easily prepared 5,6-dimethgxietralone 5 MeO %% \eo MeO
- - . 5 OMe 11 OMe 12 Br 13 OMe N4
(Scheme 1). A key step in this approach was the bis-intramolecular B 7
cyclization of the keto aldehyd®. The challenge was the " aocﬁnd'ftl'ons(i )(ﬁ) CE?O"‘TZC%’ D(c'}/)lic(lb)ulj\laof(lﬂy (Cgl(llggg,) (C:gl
; . ; : eOH, reflux; (c) Na, , reflux; , bO, reflux; (e .CO,
!ntroductlc_)n of the fo_rr_nyl substituent at C-13 (morphine number- NaOMe, MeOH. reflux; (f) LDA (2 equiv), THF, 0C; (g) LiCl, DMSO.
ing). Conjugate addition to an enone such @Gasvould not be H,0, reflux.

possible, as the enor@would tautomerize to th@-naphthol7.
We hypothesized that initial alkylation & at the C-14 position ~ Scheme 3 2

followed by ketalization with $9)-(—)-hydrobenzoin would give 8:% | O,QP’]
the bromoalkend. Intramolecular alkylidene €H insertiorf would e +
then convert bromoalkengto the cyclopenten8, and thus give 13 OMe 86% Meo14 A
access t@. -8

Our approach to the synthesis of }fmorphinel began with 0 on O”Q . o
the preparation gf-tetralonel3 (Scheme 2). Using modifications o 7;’% mo " Meom
of the publlshed proceduréwe alkylated 1,6-dibromo-2-naphthol Meod A T <y 5 OMe =<
8 with iodomethane to give the methoxynaphthal@dJliman )*/ 3 Ove “<
coupling with sodium methoxide then gave the desired trimethoxy-
naphthalend0. Dissolving metal reduction followed by hydrolysis 4 /@(} *S0Ph
led to the desiregh-tetralone5. The S-tetralone5 would tend to 97%  MeO ;_ % Meo/@g
alkylate at the benzylic position. The procedure of Arisfoff, 15 OMe = 17 O =
methoxycarbonylation, dianion alkylation usiegs-1,3-dibromo- a Conditions: (a)p-TSA, HC(OEt), CH2C|2, (b) KHMDS, EtO; (c)
2-methyl-1-propené&’ and decarboxylation, was therefore employed AcOH, H0, reflux; (d)L-selectride, THF, 0C; (e) (PhO)P(O)Ns, DEAD,
to obtain the alkylateg-tetralonel3. PhsP, THF; (f) LAH/EtOH — (1/1), EtO; (g) PhSGCI, EsN, CH,Cl..

Protection of thef-tetralone13 (Scheme 3) with $9-(—)-
hydrobenzoin gave the diastereomeric kefidsand4, which, as
anticipated, were separable by silica gel chromatography. The
undesired diastereomdr4 was readily recycled to the racemic
p-tetralonel3. Cyclization of ketal via alkylidene carbene €H
insertiorT followed by hydrolysis led to the enantiomerically pure
ketonel5. The beauty of this approach is that whiléetralonel3
can readily racemizej-tetralonel5 cannot.

The sterically congested ketord® was selectively reduced to
the cis alcohol16. Direct displacement of the alcohol by a
functionalized amine could not be achieved. Fortunately, the alcohol

16 was smoothly converted to the azide via Mitsunobu coupling.
Reduction and protection then gave sulfonamide

The key to the assembly of morphine was the anticipated
selective bis-cyclization of keto aldehy@d€Scheme 4). Alkylation
of the sulfonamidd 7 with 1,2-dibromoethane under phase-transfer
conditions providedl8, which upon ozonolysis gave the desired
keto aldehyde. The benzylic protom to the aldehyde i2 is the
most acidic, so we expected to obtain the aldehyde enolate
selectively. Although the keto aldehyd® could be isolated after
brief exposure to base, it was more practical to continue heating,
to cleanly obtain the tetracycRO. The final conversion to complete
*To whom correspondence should be addressed. E-mail: taberdf@udel.edu. the core structure of morphirewas the construction of the ether
8 For X-ray analysis. ring. Reduction of the enor0 gave a single alcohd1 (Scheme
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aConditions: (a) Red-Al, toluene, reflux; (b) CICOOEtzHf CHyCly;
(€) [(CgH17)sNCHg] H3[POfW(O)(O2)2]43>~, H202, DCE, reflux; (d) Ph-
SeSePh, NaBK EtOH, reflux; (e) NalQ, THF, HO; (f) NaxCO;, toluene,
H20; (g) MnQ,, CH;Cly; (h) LiAIH 4, THF, reflux; (i) BBrs.
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4), which upon brief exposure to BBgave clean cyclization to
22, having the pentacyclic morphine skeleton.

The next challenge (Scheme 5) was the removal of the robust
phenylsulfonyl protecting group. Although dissolving metal condi-
tions failed, we found that Red-Al was very effectivdor this
difficult deprotection. Reprotection immediately followed to give
the carbamat@3.

To effect the final oxidation to the allylic alcohol of morphine,
we first epoxidized the alker23 with H,0,.12 Regioselective ring
opening of the epoxid24 then gave the selenid®5. The expected
selectivity exhibited in both the epoxidation and the epoxide opening
was controlled by the strong steric influence of the arene ring, which
effectively blocks both the lower face of the C ring and the backside
attack at the C-6 position. Oxidation of the selenifefollowed
by elimination yielded the allylic alcoh@6 with the configuration
at C-6 opposite to that of morphine. Manganese dioxide oxidation
followed by LiAIH,4 reduction proceeded with the reportétigh
diastereocontrol to deliver codei@d. Finally, O-demethylatiot
gave morphind, identical (TLC,'H NMR, 13C NMR, [a]p) with
natural material.

A [-tetralone-based approach to the synthesis-Qfriorphine
1 has been achieved, in 23 steps frémwith an overall yield of
0.77%. This synthesis opens the way to the preparation of a variety
of C-10, C-15, and C-16 substituted morphine analogues that have
previously not been available. The strategy outlined here for the

enantioselective construction of three contiguous stereogenic centers

and the novel ring cyclizations that followed will have many
applications in target-directed organic synthesis.
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